
ANSWER TO THE MAKE-UP MIDTERM EXAMINATION

solution to the 1st question

(a). A PDE problem is called to be well-posed if it has the following three properties
that:

(1) Existence: The problem has a solution;
(2) Uniqueness: There is at most one solution;
(3) Stability: Solution depends continuously on the data given in the problem.

(b). Since 1− 4× 1× (−2) = 9 > 0, the equation is of hyperbolic type.

(c). Let

dx

dt
= 4,

then along the characteristic curve x(t) = 4t + a,where a is a fixed constant, the
partial differential equation becomes

du

dt
=

∂u

∂t
+

∂u

∂x

dx

dt
= 2u,

therefore

u(t, x(t)) = e2ta2,

then

u(t, x) = e2t(x− 4t)2.

(d). Let

dy

dx
= −2,

then along the characteristic curve y(x) = −2x+ a,where a is a fixed constant, the
partial differential equation becomes

du

dx
=

∂u

∂x
+

∂u

∂x

dy

dx
= −2u+ 1,

therefore

u(x, y(x)) =
1

2
(1− e−2x) + e−2xu(0, a),

which implies for arbitrary f ∈ C1(R),

u(x, y) =
1

2
(1− e−2x) + e−2xf(y + 2x),

is a solution to the equation.
1
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solution to the 2nd question

(a).

Theorem. Let u ∈ C2(Ω) be harmonic in Ω. Then u satisfies the mean-value
property in Ω, i.e.

u(x) =
1

4πr2

∫
∂Br(x)

u(y)dSy,

or

u(x) =
3

4πr3

∫
Br(x)

u(y)dy.

Proof. For arbitrary Bρ(x) ⊂ Ω, denote n(x) to be the outward normal vector at
x ∈ ∂Bρ(x), then we have∫

Bρ(x)

∆u(y)dy =

∫
∂Bρ(x)

∇u(y) · n(y)dSy

=ρn
∫
|w|=1

∇u(x+ ρw) · wdw

=ρn
∫
|w|=1

∂u(x+ ρw)

∂ρ
dw

=ρn
∂

∂ρ

∫
|w|=1

u(x+ ρw)dw,

which implies
∂

∂ρ

∫
|w|=1

u(x+ ρw)dw = 0,

integrating the above inequality from 0 to r, we have∫
|w|=1

u(x)dw =

∫
|w|=1

u(x+ rw)dw,

therefore

u(x) =
1

4πr2

∫
∂Br(x)

u(y)dSy.

Moreover, since ∫
Br(x)

u(y)dSy =

∫ r

0

∫
∂Bρ(x)

u(y)dSydρ,

we have

u(x) =
3

4πr3

∫
Br(x)

u(y)dy.

□

(b). Denote M = max
Ω̄

u(x), and define ΩM = {x ∈ Ω : v(x) = M}. Then since for

arbitrary x ∈ ΩM ,

u(x) =
3

4πr3

∫
Br(x)

u(y)dy, ∀Br(x) ⊂ Ω,

which implies x is a interior point of ΩM , therefore ΩM is open, since u is continous,
ΩM is also relatively closed in Ω. Suppose u is not constant and it attains its
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maximum value only in Ω, then ΩM is not empty, therefore ΩM = Ω which means
u is constant, a contradiction! Therefore

max
Ω̄

u(x) = max
∂Ω

u(x).

solution to the 3rd question

(a). By direct computation,

∂x

(
∂xh√

1 + |∂xh|2

)
=− |∂xh|2 · ∂2

xh

(1 + |∂xh|2)
3
2

+
∂2
xh√

1 + |∂xh|2

=
∂2
xh

(1 + |∂xh|2)
3
2

.

From the equation for h, we have

∂x∂th− ∂x

(
∂2
xh

1 + |∂xh|2

)
= 0,

multiplying the above equation by ∂xh√
1+|∂h|2

and integrating the resultant over

[0, 2π] , then

d

dt

∫ 2π

0

√
1 + |∂xh|2dx+

∫ 2π

0

|∂2
xh|2

(1 + |∂xh|2)
5
2

dx = 0,

which implies

d

dt

∫ 2π

0

√
1 + |∂xh|2dx ≤ 0.

(b). From the equation for h, we have

∂x∂th− ∂x

(
∂2
xh

1 + |∂xh|2

)
= 0,

multiplying the above equation by ∂xh and integrating the resultant over [0, 2π],
then

d

dt

∫ 2π

0

|∂xh|2dx+

∫ 2π

0

|∂2
xh|2

1 + |∂xh|2
dx = 0,

which implies

d

dt

∫ 2π

0

|∂xh|2dx ≤ 0.

(c).

(i). Since

∂x(arctan(∂xh)) = − ∂2
xh

1 + |∂xh|2
,

therefore h satisfies

∂th− ∂x(arctan(∂xh)) = 0,

multiplying the above equation by h and integrating the resultant over [0, 2π], we
have

d

dt

∫ 2π

0

h2dx+

∫ 2π

0

∂xh · arctan(∂xh)dx = 0,
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since x arctan(x) ≥ 0, the above equality implies

d

dt

∫ 2π

0

h2dx ≤ 0.

(ii). By direct computation,

∂t(∂xh arctan(∂xh))

=∂t∂xh · arctan(∂xh) + ∂xh · ∂t(arctan(∂xh))

=

(
arctan(∂xh) +

∂xh

1 + |∂xh|2

)
∂x

(
∂2
xh

1 + |∂xh|2

)
.

Since
d

dt

∫ 2π

0

h2dx+

∫ 2π

0

∂xh arctan(∂xh)dx = 0,

then
d2

dt2

∫ 2π

0

h2dx−
∫ 2π

0

|∂(arctan(∂xh))|2dx = 0,

which implies
d2

dt2

∫ 2π

0

h2dx ≥ 0.

(iii). By direct computation,

∂2
t h =∂t

(
∂2
xh

1 + |∂xh|2

)
=− ∂2

xh · ∂xh · ∂t∂xh
(1 + |∂xh|2)2

+
∂t∂

2
xh

1 + |∂xh|2

=∂x

(
∂t∂xh

1 + |∂xh|2

)
.

(iv). From the equation for h, we have

∂2
t h− ∂t

(
∂2
xh

1 + |∂xh|2

)
= 0,

multiplying the equation by ∂th and integrating the resultant over [0, 2π], we have

d

dt

∫ 2π

0

|∂th|2dx+

∫ 2π

0

|∂t∂xh|2

1 + |∂xh|2
dx = 0,

which implies
d

dt

∫ 2π

0

|∂th|2dx ≤ 0.

Multiplying the equation for h by ∂th and integrating the resultant over [0, 2π],
we have ∫ 2π

0

|∂th|2dx−
∫ 2π

0

∣∣∣∣ ∂2
xh

1 + |∂xh|2

∣∣∣∣2 dx = 0,

then

d

dt

∫ 2π

0

∣∣∣∣ ∂2
xh

1 + |∂xh|2

∣∣∣∣2 dx =
d

dt

∫ 2π

0

|∂th|2dx ≤ 0.


