ANSWER TO THE MAKE-UP MIDTERM EXAMINATION

SOLUTION TO THE 1ST QUESTION

(a). A PDE problem is called to be well-posed if it has the following three properties that:
(1) Existence: The problem has a solution;
(2) Uniqueness: There is at most one solution;
(3) Stability: Solution depends continuously on the data given in the problem.
(b). Since $1-4 \times 1 \times(-2)=9>0$, the equation is of hyperbolic type.
(c). Let

$$
\frac{d x}{d t}=4,
$$

then along the characteristic curve $x(t)=4 t+a$, where a is a fixed constant, the partial differential equation becomes

$$
\frac{d u}{d t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} \frac{d x}{d t}=2 u
$$

therefore

$$
u(t, x(t))=e^{2 t} a^{2}
$$

then

$$
u(t, x)=e^{2 t}(x-4 t)^{2} .
$$

(d). Let

$$
\frac{d y}{d x}=-2
$$

then along the characteristic curve $y(x)=-2 x+a$, where a is a fixed constant, the partial differential equation becomes

$$
\frac{d u}{d x}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial x} \frac{d y}{d x}=-2 u+1
$$

therefore

$$
u(x, y(x))=\frac{1}{2}\left(1-e^{-2 x}\right)+e^{-2 x} u(0, a)
$$

which implies for arbitrary $f \in C^{1}(\mathbb{R})$,

$$
u(x, y)=\frac{1}{2}\left(1-e^{-2 x}\right)+e^{-2 x} f(y+2 x)
$$

is a solution to the equation.

SOLUTION TO THE 2ND QUESTION

(a).

Theorem. Let $u \in C^{2}(\Omega)$ be harmonic in Ω. Then u satisfies the mean-value property in Ω, i.e.

$$
u(x)=\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} u(y) d S_{y}
$$

or

$$
u(x)=\frac{3}{4 \pi r^{3}} \int_{B_{r}(x)} u(y) d y
$$

Proof. For arbitrary $B_{\rho}(x) \subset \Omega$, denote $n(x)$ to be the outward normal vector at $x \in \partial B_{\rho}(x)$, then we have

$$
\begin{aligned}
\int_{B_{\rho}(x)} \Delta u(y) d y & =\int_{\partial B_{\rho}(x)} \nabla u(y) \cdot n(y) d S_{y} \\
& =\rho^{n} \int_{|w|=1} \nabla u(x+\rho w) \cdot w d w \\
& =\rho^{n} \int_{|w|=1} \frac{\partial u(x+\rho w)}{\partial \rho} d w \\
& =\rho^{n} \frac{\partial}{\partial \rho} \int_{|w|=1} u(x+\rho w) d w
\end{aligned}
$$

which implies

$$
\frac{\partial}{\partial \rho} \int_{|w|=1} u(x+\rho w) d w=0
$$

integrating the above inequality from 0 to r, we have

$$
\int_{|w|=1} u(x) d w=\int_{|w|=1} u(x+r w) d w
$$

therefore

$$
u(x)=\frac{1}{4 \pi r^{2}} \int_{\partial B_{r}(x)} u(y) d S_{y}
$$

Moreover, since

$$
\int_{B_{r}(x)} u(y) d S_{y}=\int_{0}^{r} \int_{\partial B_{\rho}(x)} u(y) d S_{y} d \rho,
$$

we have

$$
u(x)=\frac{3}{4 \pi r^{3}} \int_{B_{r}(x)} u(y) d y
$$

(b). Denote $M=\max _{\bar{\Omega}} u(x)$, and define $\Omega_{M}=\{x \in \Omega: v(x)=M\}$. Then since for arbitrary $x \in \Omega_{M}$,

$$
u(x)=\frac{3}{4 \pi r^{3}} \int_{B_{r}(x)} u(y) d y, \quad \forall B_{r}(x) \subset \Omega
$$

which implies x is a interior point of Ω_{M}, therefore Ω_{M} is open, since u is continous, Ω_{M} is also relatively closed in Ω. Suppose u is not constant and it attains its
maximum value only in Ω, then Ω_{M} is not empty, therefore $\Omega_{M}=\Omega$ which means u is constant, a contradiction! Therefore

$$
\max _{\bar{\Omega}} u(x)=\max _{\partial \Omega} u(x)
$$

solution to the 3RD Question

(a). By direct computation,

$$
\begin{aligned}
\partial_{x}\left(\frac{\partial_{x} h}{\sqrt{1+\left|\partial_{x} h\right|^{2}}}\right) & =-\frac{\left|\partial_{x} h\right|^{2} \cdot \partial_{x}^{2} h}{\left(1+\left|\partial_{x} h\right|^{2}\right)^{\frac{3}{2}}}+\frac{\partial_{x}^{2} h}{\sqrt{1+\left|\partial_{x} h\right|^{2}}} \\
& =\frac{\partial_{x}^{2} h}{\left(1+\left|\partial_{x} h\right|^{2}\right)^{\frac{3}{2}}} .
\end{aligned}
$$

From the equation for h, we have

$$
\partial_{x} \partial_{t} h-\partial_{x}\left(\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}\right)=0
$$

multiplying the above equation by $\frac{\partial_{x} h}{\sqrt{1+|\partial h|^{2}}}$ and integrating the resultant over $[0,2 \pi]$, then

$$
\frac{d}{d t} \int_{0}^{2 \pi} \sqrt{1+\left|\partial_{x} h\right|^{2}} d x+\int_{0}^{2 \pi} \frac{\left|\partial_{x}^{2} h\right|^{2}}{\left(1+\left|\partial_{x} h\right|^{2}\right)^{\frac{5}{2}}} d x=0
$$

which implies

$$
\frac{d}{d t} \int_{0}^{2 \pi} \sqrt{1+\left|\partial_{x} h\right|^{2}} d x \leq 0
$$

(b). From the equation for h, we have

$$
\partial_{x} \partial_{t} h-\partial_{x}\left(\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}\right)=0
$$

multiplying the above equation by $\partial_{x} h$ and integrating the resultant over $[0,2 \pi]$, then

$$
\frac{d}{d t} \int_{0}^{2 \pi}\left|\partial_{x} h\right|^{2} d x+\int_{0}^{2 \pi} \frac{\left|\partial_{x}^{2} h\right|^{2}}{1+\left|\partial_{x} h\right|^{2}} d x=0
$$

which implies

$$
\frac{d}{d t} \int_{0}^{2 \pi}\left|\partial_{x} h\right|^{2} d x \leq 0
$$

(c).
(i). Since

$$
\partial_{x}\left(\arctan \left(\partial_{x} h\right)\right)=-\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}},
$$

therefore h satisfies

$$
\partial_{t} h-\partial_{x}\left(\arctan \left(\partial_{x} h\right)\right)=0
$$

multiplying the above equation by h and integrating the resultant over [$0,2 \pi$], we have

$$
\frac{d}{d t} \int_{0}^{2 \pi} h^{2} d x+\int_{0}^{2 \pi} \partial_{x} h \cdot \arctan \left(\partial_{x} h\right) d x=0
$$

since $x \arctan (x) \geq 0$, the above equality implies

$$
\frac{d}{d t} \int_{0}^{2 \pi} h^{2} d x \leq 0
$$

(ii). By direct computation,

$$
\begin{aligned}
& \partial_{t}\left(\partial_{x} h \arctan \left(\partial_{x} h\right)\right) \\
= & \partial_{t} \partial_{x} h \cdot \arctan \left(\partial_{x} h\right)+\partial_{x} h \cdot \partial_{t}\left(\arctan \left(\partial_{x} h\right)\right) \\
= & \left(\arctan \left(\partial_{x} h\right)+\frac{\partial_{x} h}{1+\left|\partial_{x} h\right|^{2}}\right) \partial_{x}\left(\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}\right) .
\end{aligned}
$$

Since

$$
\frac{d}{d t} \int_{0}^{2 \pi} h^{2} d x+\int_{0}^{2 \pi} \partial_{x} h \arctan \left(\partial_{x} h\right) d x=0
$$

then

$$
\frac{d^{2}}{d t^{2}} \int_{0}^{2 \pi} h^{2} d x-\int_{0}^{2 \pi}\left|\partial\left(\arctan \left(\partial_{x} h\right)\right)\right|^{2} d x=0
$$

which implies

$$
\frac{d^{2}}{d t^{2}} \int_{0}^{2 \pi} h^{2} d x \geq 0
$$

(iii). By direct computation,

$$
\begin{aligned}
\partial_{t}^{2} h & =\partial_{t}\left(\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}\right) \\
& =-\frac{\partial_{x}^{2} h \cdot \partial_{x} h \cdot \partial_{t} \partial_{x} h}{\left(1+\left|\partial_{x} h\right|^{2}\right)^{2}}+\frac{\partial_{t} \partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}} \\
& =\partial_{x}\left(\frac{\partial_{t} \partial_{x} h}{1+\left|\partial_{x} h\right|^{2}}\right)
\end{aligned}
$$

(iv). From the equation for h, we have

$$
\partial_{t}^{2} h-\partial_{t}\left(\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}\right)=0
$$

multiplying the equation by $\partial_{t} h$ and integrating the resultant over $[0,2 \pi]$, we have

$$
\frac{d}{d t} \int_{0}^{2 \pi}\left|\partial_{t} h\right|^{2} d x+\int_{0}^{2 \pi} \frac{\left|\partial_{t} \partial_{x} h\right|^{2}}{1+\left|\partial_{x} h\right|^{2}} d x=0
$$

which implies

$$
\frac{d}{d t} \int_{0}^{2 \pi}\left|\partial_{t} h\right|^{2} d x \leq 0
$$

Multiplying the equation for h by $\partial_{t} h$ and integrating the resultant over [$0,2 \pi$], we have

$$
\int_{0}^{2 \pi}\left|\partial_{t} h\right|^{2} d x-\int_{0}^{2 \pi}\left|\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}\right|^{2} d x=0
$$

then

$$
\frac{d}{d t} \int_{0}^{2 \pi}\left|\frac{\partial_{x}^{2} h}{1+\left|\partial_{x} h\right|^{2}}\right|^{2} d x=\frac{d}{d t} \int_{0}^{2 \pi}\left|\partial_{t} h\right|^{2} d x \leq 0
$$

